Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

N-[tert-Butoxycarbonylglycyl-(Z)- α, β -dehydrophenylalanylglycyl-(E)- α, β -dehydrophenylalanylphenylalanyl]-4-nitroaniline ethanol solvate

Maciej Makowski, ${ }^{\text {a }}$ Anna Brzuszkiewicz, ${ }^{\text {b }}{ }^{*}$ Marek Lisowski ${ }^{\text {b }}$ and Tadeusz Lis ${ }^{\text {b }}$

> a Institute of Chemistry, University of Opole, 48 Oleska Street, 45-052 Opole, Poland, and ${ }^{\text {b/ }}$ Faculty of Chemistry, University of Wrocław, 14 Joliot-Curie Street, 50-383 Wrocław, Poland
> Correspondence e-mail: annab@wcheto.chem.uni.wroc.pl

Received 10 February 2005
Accepted 12 May 2005
Online 11 June 2005

The α, β-dehydrophenylalanine residues influence the conformation of the title pentapeptide $\mathrm{Boc}^{0}-\mathrm{Gly}^{1}-\Delta^{Z} \mathrm{Phe}^{2}-\mathrm{Gly}^{3}-$ Δ^{E} Phe $^{4}-\mathrm{L}-\mathrm{Ph}{ }^{5}-p$-NA ethanol solvate, $\mathrm{C}_{42} \mathrm{H}_{43} \mathrm{~N}_{7} \mathrm{O}_{9} \cdot \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$. The first unsaturated phenylalanyl ($\Delta^{Z} \mathrm{Phe}^{2}$) and the third glycyl (Gly ${ }^{3}$) residues form a type I β turn, while the second unsaturated phenylalanyl ($\Delta^{E} \mathrm{Phe}^{4}$) and the last phenylalanyl (L -Phe ${ }^{5}$) residues are part of a type II β turn. All the amino acids in the peptide are linked trans to one another. The crystal structure is stabilized by intra- and intermolecular hydrogen bonds.

Comment

α, β-Dehydroamino acid residues (amino acids with a double bond between the C_{α} and C_{β} atoms) have been found in many biologically active peptides having antibiotic properties (Noda et al., 1983). Incorporation of a dehydroamino acid into a peptide decreases conformational flexibility (Aubry et al., 1984). The molecular structures of α, β-dehydrophenylalaninecontaining (Δ Phe) peptides have shown that α, β-dehydrophenylalanine induces β turns (Venkatachalam, 1968) in short sequences with one Δ Phe residue (Główka et al., 1987; Główka, 1988) and a 3_{10} helical conformation in longer sequences (Rajashankar et al., 1992; Rajashankar, Ramakumar, Jain et al., 1995; Rajashankar, Ramakumar, Mal et al., 1995; Padmanabhan \& Singh, 1993; Jain et al., 1997). The number and position of Δ Phe residues and the type of neighbouring amino acids also play an important role in peptide chain conformation (Rajashankar et al., 1996).

The present paper reports the crystal structure of the title pentapeptide $\mathrm{Boc}^{0}-\mathrm{Gly}^{1}-\Delta^{Z} \mathrm{Phe}^{2}-\mathrm{Gly}^{3}-\Delta^{E} \mathrm{Phe}^{4}-\mathrm{L}-\mathrm{Phe}^{5}-p-$ NA ethanol solvate (p-NA is para-nitroaniline), (I), containing one Δ^{Z} Phe (Z isomer of an α, β-dehydrophenylalanine residue, i.e. with the aromatic ring cis to the N atom) between
two flexible glycine residues and one Δ^{E} Phe (E isomer of an α, β-dehydrophenylalanine residue, i.e. with the aromatic ring trans to the N atom) between glycine and phenylalanine residues. There is one molecule in the asymmetric part of the unit cell. The atom-numbering scheme and a general view of the molecule are shown in Fig. 1, while selected bond lengths and angles are given in Table 1.

(I)

The $\mathrm{C}_{\alpha}=\mathrm{C}_{\beta}(\mathrm{C} 8=\mathrm{C} 9$ and $\mathrm{C} 19=\mathrm{C} 20)$ distances for the Δ Phe residues of (I) are in agreement with those found in other structures containing Δ Phe (Główka, 1988). A shortening of about 0.045 (7) \AA for the $\mathrm{N} 2-\mathrm{C}_{\alpha} 8$ bond in $\Delta^{Z} \mathrm{Phe}^{2}$ and 0.041 (7) \AA for the $\mathrm{N} 4-\mathrm{C}_{\alpha} 19$ bond in Δ^{E} Phe 4 is observed with respect to the corresponding bonds in the saturated Phe ${ }^{5}$ residue ($\mathrm{N} 5-\mathrm{C}_{\alpha} 28$). The torsion angles $\chi^{2}\left[6.3(11)^{\circ}\right], \chi^{2,1}$ [22.3 (11) $\left.{ }^{\circ}\right]$ and $\chi^{2,2}\left[-160.4(7)^{\circ}\right]$ of the Δ^{Z} Phe 2 residue suggest that its side chain is almost planar. The torsion angles $\chi^{4}\left[-172.3(6)^{\circ}\right], \chi^{4,1}\left[38.3(11)^{\circ}\right]$ and $\chi^{4,2}\left[-144.2(7)^{\circ}\right]$ of the Δ^{E} Phe 4 residue suggest that, in this case, the side chain is antiperiplanar (Table 1). The steric contacts between the sidechain and main-chain atoms of $\Delta^{Z} \mathrm{Phe}^{2}$ and $\Delta^{E} \mathrm{Phe}^{4}$ are partially relaxed by rearrangement of the bond angles at the C_{α} and C_{β} atoms of these residues. As in other cases (Pieroni et al., 1975, 1976-77; Aubry et al., 1985), the cinnamic moieties of the Δ Phe residues in the title peptide are not planar. The torsion angles between the $\mathrm{C}=\mathrm{C}$ and $\mathrm{C}=\mathrm{O}$ bonds of $\Delta^{Z} \mathrm{Phe}^{2}$ and Δ^{E} Phe 4 are 29.1 (9) and $-113.2(8)^{\circ}$, respectively.

All the amino acids in the title pentapeptide are linked trans to one another. The deviations of all ω angles are not larger than 9°. The values of torsion angles φ and ψ of the Δ^{Z} Phe 2 and Gly^{3} residues suggest a type I β turn conformation, while the torsion angles of $\Delta^{E} \mathrm{Phe}^{4}$ and Phe ${ }^{5}$ indicate that these residues form a type II β turn. The torsion angles of the tertbutoxycarbonyl group (φ^{0} and ω^{0}) correspond to a trans-trans conformation.

The conformation of (I) is stabilized by nine intramolecular and four intermolecular hydrogen bonds of different types, namely $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-\mathrm{H} \cdots \mathrm{N}, \mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ (Table 2). The carbonyl O atoms of Gly ${ }^{1}$ (O3) and Gly ${ }^{3}$ (O5)

Figure 1
The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Dashed lines indicate intramolecular hydrogen bonds.
take part in $\mathrm{N} 4-\mathrm{H} 4 \mathrm{D} \cdots \mathrm{O} 3$ and $\mathrm{N} 6-\mathrm{H} 6 C \cdots \mathrm{O} 5$ hydrogen bonds, respectively, as shown in Fig. 1. The π electrons of the aromatic ring of $\Delta^{E} \mathrm{Phe}^{4}$ take part in $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions with atom $\mathrm{H} 4 B$ of Boc and atom H35A of L -Phe ${ }^{5}$. The distances and angles between $\mathrm{C}-\mathrm{H}$ in the alkyl group and the centre of the $\Delta^{E} \mathrm{Phe}^{4}$ ring (denoted $C g 1$) are $3.883 \AA$ and 150°, respectively, for the $\mathrm{C} 4-\mathrm{H} 4 B \cdots C g 1$ contact and $3.557 \AA$ and 172° for the $\mathrm{C} 35-\mathrm{H} 35 A \cdots \mathrm{Cg} 1$ contact (Table 2).

These results show that the presence of two α, β-dehydrophenylalanyl residues induces β turns in the pentapeptide Boc $^{0}-\mathrm{Gly}^{1}-\Delta^{Z}$ Phe $^{2}-\mathrm{Gly}^{3}-\Delta^{E}$ Phe $^{4}-\mathrm{L}-\mathrm{Phe}^{5}-p-\mathrm{NA}$. This is consistent with the results for other short peptides, such as the tetrapeptide $\mathrm{Boc}^{0}-\mathrm{Gly}^{1}-\Delta^{Z} \mathrm{Phe}^{2}-\mathrm{Gly}^{3}-\mathrm{Phe}^{4}-p$-NA (Ejsmont et al., 2001).

Experimental

The synthesis of Boc-Gly- Δ^{Z} Phe has been described by Makowski et al. (1985). Boc-Gly- Δ^{E} Phe-L-Phe- p-NA was obtained in the same manner as its Z isomer (Makowski et al., 2001); instead of TBTU [2-(1 H -benzotriazol-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate], isobutyl chloroformate ($0.26 \mathrm{ml}, 2 \mathrm{mmol}$) in tetrahydrofuran (3.5 ml) was used. Isomers E and Z of Boc-Gly- Δ Phe-L-Phe- p-NA were separated on a silica-gel H-60 column (Merck), eluting with EtOAc ($1-40 \%$) in benzene. Yields of isomers E and Z were 18 and 53%, respectively. Gly- Δ^{E} Phe-L-Phe- p-NA was obtained according to the method described by Makowski et al. (2001) and used for further synthesis without characterization. The only modification was that, instead of dissolution in ethyl ether and evaporation, the oily deblocked peptide was dissolved in propan-2-ol (20 ml) and preci-
pitated with hexane. TFA (trifluoroacetic acid) ($0.139 \mathrm{ml}, 1 \mathrm{mmol}$) was added to a solution of Boc-Gly- Δ^{Z} Phe ($0.16 \mathrm{~g}, 0.5 \mathrm{mmol}$) in tetrahydrofuran (2 ml) and the solution was cooled to 263 K . Isobutyl chloroformate ($0.066 \mathrm{ml}, 0.5 \mathrm{mmol}$) was then added and the mixture was left for 1.5 min at this temperature. Finally, Gly- Δ^{E} Phe-L-Phe-p-NA ($0.3 \mathrm{~g}, 0.5 \mathrm{mmol}$) was added and the reaction was carried out for 22 h at room temperature. The precipitate which formed was filtered off and the solvent was removed under reduced pressure. The resulting oil was dissolved in $\mathrm{EtOAc}(50 \mathrm{ml})$ and washed successively with $2 M \mathrm{HCl}(2 \times 3 \mathrm{ml})$, saturated potassium bicarbonate $(3 \times 3 \mathrm{ml})$ and brine (3 ml). The organic layer was dried over MgSO_{4}, the drying agent was removed by filtration and the solvent was evaporated. The product was crystallized from EtOAc-benzene (1:1)/hexane. The purity of the peptide (100%) was checked by high-perfomance liquid chromatography using an Alltech Alltima column (C-18, $5 \mu \mathrm{~m}, 150 \times$ 4.6 mm); solvent system: $A 0.1 \% \mathrm{TFA}, B \mathrm{MeCN}, A: B 35: 65$, flow rate $1 \mathrm{ml} \mathrm{min}^{-1}$ [yield $0.305 \mathrm{~g}(77 \%)$, m.p. 476-478 K]. Elemental analysis calculated for $\mathrm{C}_{42} \mathrm{H}_{43} \mathrm{~N}_{7} \mathrm{O}_{9}$: C 63.87 , H 5.49%; found: C $64.04, \mathrm{H}$ 5.28%. Long thin needle-shaped crystals of $\mathrm{Boc}^{0}-\mathrm{Gly}^{1}-\Delta^{Z} \mathrm{Phe}^{2}-$ Gly ${ }^{3}-\Delta^{E}$ Phe $^{4}-\mathrm{L}-\mathrm{Phe}^{5}-p-\mathrm{NA} \cdot \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, (I), suitable for X-ray structure analysis, were grown at room temperature from a solution in ethanol. The crystals are sensitive and decompose in air.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{42} \mathrm{H}_{43} \mathrm{~N}_{7} \mathrm{O}_{9} \cdot \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O} \\
& M_{r}=835.90 \\
& \text { Monoclinic, } P 2_{1}{ }_{1} \\
& a=13.080(4) \AA \\
& b=8.998(3) \AA \\
& c=18.406(5) \AA \\
& \beta=99.37(3)^{\circ} \\
& V=2137.4(11) \AA^{3} \\
& Z=2
\end{aligned}
$$

$$
\begin{aligned}
& D_{x}=1.299 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \mathrm{Cu} \mathrm{~K} \mathrm{\alpha} \text { radiation } \\
& \text { Cell parameters from } 7064 \\
& \quad \text { reflections } \\
& \theta=3-73^{\circ} \\
& \mu=0.77 \mathrm{~mm}^{-1} \\
& T=100(2) \mathrm{K} \\
& \text { Long thin needle, yellow } \\
& 0.45 \times 0.04 \times 0.02 \mathrm{~mm}
\end{aligned}
$$

Data collection

Oxford Xcalibur PX κ-geometry
diffractometer with CCD area
detector
ω and φ scans
Absorption correction: analytical
(CrysAlis $R E D$; Oxford
Diffraction, 2003)
$T_{\min }=0.828, T_{\max }=0.988$

14511 measured reflections 4423 independent reflections 2794 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.085$
$\theta_{\text {max }}=73.5^{\circ}$
$h=-16 \rightarrow 13$
$k=-9 \rightarrow 11$
$l=-22 \rightarrow 19$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.072$
$w R\left(F^{2}\right)=0.192$
$S=1.10$
4423 reflections
552 parameters
H-atom parameters constrained

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

N2-C8	1.419 (7)	C8-C9	1.344 (9)
N4-C19	1.423 (8)	C19-C20	1.351 (8)
N5-C28	1.464 (7)	C28-C29	1.529 (8)
C9-C8-N2	123.2 (6)	N4-C19-C27	115.5 (5)
C9-C8-C16	118.8 (6)	N5-C28-C36	113.1 (5)
N2-C8-C16	117.9 (5)	N5-C28-C29	112.7 (5)
C20-C19-N4	119.4 (6)	C36-C28-C29	112.9 (5)
C20-C19-C27	124.8 (6)		
O1-C5-N1-C6	-176.9 (6)	N3-C17-C18-N4	13.6 (9)
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 5-\mathrm{N} 1$	-176.4 (6)	C17-C18-N4-C19	174.9 (6)
C5-N1-C6-C7	87.5 (8)	C18-N4-C19-C27	38.6 (8)
N1-C6-C7-N2	164.5 (6)	N4-C19-C20-C21	-172.3 (6)
C6-C7-N2-C8	171.5 (6)	C19-C20-C21-C22	38.3 (11)
$\mathrm{C} 7-\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 16$	59.1 (8)	C19-C20-C21-C26	-144.2 (7)
N2-C8-C9-C10	6.3 (11)	N4-C19-C27-N5	-120.8 (6)
C8-C9-C10-C15	-160.4 (7)	C19-C27-N5-C28	-176.3 (5)
C8-C9-C10-C11	22.3 (11)	C27-N5-C28-C36	-109.7 (7)
N2-C8-C16-N3	23.7 (9)	N5-C28-C36-N6	28.9 (8)
C8-C16-N3-C17	-177.1 (6)	C28-C36-N6-C37	176.1 (6)
C16-N3-C17-C18	82.2 (8)		

All H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.95-1.00 \AA$ and $\mathrm{N}-\mathrm{H}$ distances of $0.88 \AA$, and were allowed to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$. The absolute structure was chosen on the basis of the known absolute configuration of the l-phenylalanine residue. The Friedel pairs were merged. Owing to the large anisotropic displacement parameter, the ethanol molecule is certainly slightly disordered, but the type of disorder could not be resolved.

Data collection: CrysAlis CCD (Oxford Diffraction, 2003); cell refinement: CrysAlis RED (Oxford Diffraction, 2003); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXD (Sheldrick, 2002); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXL97.

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).
The $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction is a hydrogen bond occurring between $\mathrm{C}-\mathrm{H}$ in an alkyl group and the π system of Δ^{E} Phe ${ }^{4}$. The centroid of the $\Delta^{E} \mathrm{Phe}^{4}$ ring is denoted Cg1.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 D \cdots \mathrm{O} 4^{\mathrm{i}}$	0.88	2.05	$2.734(8)$	134
$\mathrm{~N} 2-\mathrm{H} 2 D \cdots \mathrm{O}^{\mathrm{i}}$	0.88	1.94	$2.784(7)$	161
$\mathrm{~N} 3-\mathrm{H} 3 D \cdots \mathrm{O}^{\mathrm{i}}$	0.88	2.36	$3.057(7)$	137
$\mathrm{C} 6-\mathrm{H} 6 B \cdots \mathrm{O} 4^{\mathrm{i}}$	0.99	2.49	$3.018(10)$	113
$\mathrm{C} 13-\mathrm{H} 13 A \cdots \mathrm{O} 7^{\mathrm{ii}}$	0.95	2.42	$3.222(9)$	142
$\mathrm{C} 3-\mathrm{H} 3 B \cdots \mathrm{O} 2$	0.98	2.33	$2.924(10)$	118
$\mathrm{C} 4-\mathrm{H} 4 A \cdots \mathrm{O} 2$	0.98	2.55	$3.085(12)$	114
$\mathrm{C} 31-\mathrm{H} 31 A \cdots \mathrm{O} 7$	0.95	2.51	$3.101(8)$	120
$\mathrm{C} 38-\mathrm{H} 38 A \cdots \mathrm{O} 7$	0.95	2.21	$2.820(8)$	121
$\mathrm{C} 11-\mathrm{H} 11 A \cdots \mathrm{~N} 2$	0.95	2.52	$3.080(9)$	118
$\mathrm{~N} 4-\mathrm{H} 4 D \cdots \mathrm{O} 3$	0.88	2.09	$2.925(7)$	158
$\mathrm{~N} 6-\mathrm{H} 6 C \cdots \mathrm{O} 5$	0.88	2.12	$2.974(7)$	163
$\mathrm{~N} 4-\mathrm{H} 4 D \cdots \mathrm{~N} 3$	0.88	2.36	$2.766(8)$	108
$\mathrm{~N} 6-\mathrm{H} 6 C \cdots \mathrm{~N} 5$	0.88	2.35	$2.764(7)$	109
$\mathrm{O} 10-\mathrm{H} 10 A \cdots \mathrm{O} 2$	0.84	2.00	$2.843(10)$	178
$\mathrm{C} 4-\mathrm{H} 4 B \cdots C g 1$	0.98	3.00	3.883	150
$\mathrm{C} 35-\mathrm{H} 35 A \cdots \mathrm{C} 1$	0.95	2.61	3.557	172

Symmetry codes: (i) $1-x, y+\frac{1}{2}, 2-z$; (ii) $x, y, z+1$.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DN1081). Services for accessing these data are described at the back of the journal.

References

Aubry, A., Allier, F., Boussard, G. \& Marraud, M. (1985). Biopolymers, 24, 639-646.
Aubry, A., Boussard, G. \& Marraud, M. (1984). C. R. Acad. Sci. Ser. II, 299, 1031-1033.
Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Ejsmont, K., Makowski, M. \& Zaleski, J. (2001). Acta Cryst. C57, 205-207.
Główka, M. L. (1988). Acta Cryst. C44, 1639-1641.
Główka, M. L., Gilli, G., Bertolasi, V. \& Makowski, M. (1987). Acta Cryst. C43, 1403-1406.
Jain, R. M., Rajashankar, K. R., Ramakumar, S. \& Chauhan, V. S. (1997). J. Am. Chem. Soc. 119, 3205-3211.
Makowski, M., Pawełczak, M., Latajka, R., Nowak, K. \& Kafarski, P. (2001). J. Peptide Sci. 7, 141-145.
Makowski, M., Rzeszotarska, B., Kubica, Z. \& Pietrzyński, G. (1985). Liebigs Ann. Chem. 14, 893-900.
Noda, K., Shimohigashi, Y. \& Izumiya, N. (1983). Peptides: Analysis, Synthesis, Biology, Vol. 5, edited by E. Gross \& J. Meienhofer, pp. 285-339. New York: Academic Press.
Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Version 1.171. Oxford Diffraction Poland, Wrocław, Poland.
Padmanabhan, B. \& Singh, T. P. (1993). Biopolymers, 33, 613-619.
Pieroni, O., Fissi, A., Merlino, S. \& Ciardelli, F. (1976-77). Israel J. Chem. 15, 22-28.
Pieroni, O., Montagnoli, G., Fissi, A., Merlino, S. \& Ciardelli, F. (1975). J. Am. Chem. Soc. 97, 6820-6826.
Rajashankar, K. R., Ramakumar, S. \& Chauhan, V. S. (1992). J. Am. Chem. Soc. 114, 9225-9226.
Rajashankar, K. R., Ramakumar, S., Jain, R. M. \& Chauhan, V. S. (1995). J. Am. Chem. Soc. 1174, 11773-11779.
Rajashankar, K. R., Ramakumar, S., Mal, T. K., Jain, R. M. \& Chauhan, V. S. (1995). Biopolymers, 35, 141-147.

Rajashankar, K. R., Ramakumar, S., Mal, T. K., Jain, R. M. \& Chauhan, V. S. (1996). Angew. Chem. Int. Ed. Engl. 35, 765-768.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (2002). SHELXD. University of Göttingen, Germany.
Venkatachalam, C. M. (1968). Biopolymers, 6, 1425-1436.

